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Connectivity, Topology, Structure, …



Geometry

10 × 3 × 3 = 90 DoFs
#triangles

#vertices per triangle

#coords per vertex

11 × 3 = 33 DoFs
#coords per vertex

#vertices



90 - 57 = 33 DoFs

Geometry

19 × 3 =  57 constraints
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Constraints

co-linear, co-planar
co-circular, co-spherical

smooth
symmetric
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Shape Space

-0.36335998    -0.17384000    -0.09036450 

-0.37013700    -0.17151199    -0.14597499 

 0.98589599     0.15904399     0.04391970 

 0.98621499     0.15908899     0.04175389 

-0.36660099    -0.16554699    -0.14292900 

-0.36524501    -0.17519900    -0.08687029 

-0.37211400    -0.16522799    -0.12538200 

-0.36904799    -0.16370399    -0.12660099 

...

x           y           z

n vertices → 3n DoFs 

3n dim. Shape Space
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Shape Space

Constraints  
- all vertices of each parameter line should lie on a circle 
- all elements should be squares



Shape Space

Constraints  
- all vertices of each parameter line should lie on a circle 
- all elements should be squares



Challenge for Design
!

!

!

Global Coupling 
• Constraints can affect multiple vertices 
• Vertices can be affected by multiple constraints

Constraints  
- all vertices of each parameter line should lie on a circle 
- all elements should be squares



Shape Space Exploration

Constraints  
- all vertices of each parameter line should lie on a circle 
- all elements should be squares



Constraint Projection

y = Pi(x) = argmin
y2Ci

||y� x||22

C1

Shape Space 3D Space

“space of all squares”
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Constraint Projection

C1
y

Shape Space 3D Space

y = Pi(x) = argmin
y2Ci

||y� x||22Local Step

y

“space of all squares”



Constraint Projection

x

Shape Space 3D Space



Constraint Projection

C1 y1

Shape Space 3D Space

x



Constraint Projection

C1 y1

Shape Space 3D Space

x

y1



Constraint Projection

C2

C1 y1

y2

x

Shape Space 3D Space



Constraint Projection

C2

C1 y1

y2

x

Shape Space 3D Space

y2



Constraint Projection

C2

C1 C3y1

y2

y3

x

Shape Space 3D Space



Constraint Projection

C2

C1 C3y1

y2

y3

x

Shape Space 3D Space

y3



Constraint Projection

C2

C1 C3

C4

y1

y2

y3

y4

x

Shape Space 3D Space



Constraint Projection

C2

C1 C3

C4

y1

y2

y3

y4

x

Shape Space 3D Space

y4



Constraint Projection

C2

C1 C3

C4

y1

y2

y3

y4

x

Shape Space 3D Space



Constraint Projection

C2

C1 C3

C4

y1

y2

y3

y4

x

Shape Space 3D Space



Constraint Projection
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Optimization
Local-global solver 

• Local Step: each constraint is treated separately 
using a constraint projection 
- all projections can be performed in parallel 
- new custom constraints can easily be integrated 

• Global Step: conflicting local positions are 
consolidated in a global linear solve 
- independent of specific constraints used 
- pre-factored system matrix allows efficient 

computations

ite
ra

te



Optimization
Local-global solver
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ShapeOp
C++ library for Shape Optimization

efficient

robust

accurate

general

extensiblesimple

Bouaziz, Deuss, Schwartzburg, Weise, Pauly: Shape-Up: Shaping Discrete Geometry with Projections, Symposium on Geometry Processing 2012  
Bouaziz, Martin, Liu, Kavan, Pauly: Projective Dynamics: Fusing Constraint Projections for Fast Simulation, ACM SIGGRAPH 2014 



ShapeOp
C++ library for Shape Optimization 

• open source 
• free & extensible 
• C# and python bindings 
• WebGl demo 
• Integrated into Kangaroo

www.shapeop.org



ShapeOp
Rhino, Grasshopper, Python

Anders Deleuran



ShapeOp
Dynamic Simulation in Kangaroo

Daniel Piker



Dynamic Simulation in Kangaroo

ShapeOp

Daniel Piker



ShapeOp
People

Sofien Bouaziz Bailin Deng Anders DeleuranMario Deuss Daniel Piker

Johan Berdat, Alexandre Kaspar, Yuliy 
Schwartzburg, Thibaut Weise

www.shapeop.org

McNeel 
Foster + Partners
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Wire Mesh Façades



Wire Mesh Sculptures

Raymond Wiger

Eric Boyer



Our Goal



Research Approach

Intuition



Understanding the Material



Understanding the Material
Counterintuitive deformations Insufficient material

Global Coupling!



Understanding the Material
Counterintuitive deformations Insufficient material
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Research Approach

Intuition Theory



Mathematical Model

Chebyshev Nets
r(u, v) : D ⇢ R2 ! R3

|ru| = |rv| = 1.

Inextensible

w(u, v) := \(ru, rv)

Allows Shearing



Theory of Chebyshev Nets
Curvature 

!

!

!

�K(u, v) sin!(u, v) = !uv(u, v).

ShearGaussian Curvature



Curvature 

!

!

!

Hazzidakis Constraints (1878)

Theory of Chebyshev Nets

Tot(K) =

Z

⇤
KdA = 2⇡ �

3X

i=0

↵i

u

v



Theory of Chebyshev Nets
Understanding Hazzidakis

North pole

South pole

Recall:

Global Coupling!
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Algorithm
Optimization

min F
close

(x) + w
fair

F
fair

(x)

s.t. kxi � xjk = l, 8 edge xixj

\xixjxk 2 [45�, 135�], 8 angle \xixjxk

approximate reference smoothness

shear angle bounds

inextensibility



Algorithm
Optimization 

!

!

!

• coarse to fine hierarchy

min F
close

(x) + w
fair

F
fair

(x)

s.t. kxi � xjk = l, 8 edge xixj

\xixjxk 2 [45�, 135�], 8 angle \xixjxk

optimize refine optimize
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Design Process

Load Target Shape
Explore Initial Conditions

Choose Coarse 

Wire Mesh Resolution

Phase I: Partially cover target w/ interpolating wire mesh

Potential Design

Subdivide

Global Optimization

Edit Wire Mesh

Phase II: Improve coverage w/ approximating wire mesh



Research Approach

Intuition Theory

Design Process

AlgorithmValidation
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Fabrication

Scaffold



Fabrication

Intersection Curves



Fabrication



Fabrication



Fabrication



Fabrication



Façade Example

guide form

planar domain

wire mesh model



Façade Example
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Motivation

wooden toycardboard furnituretaxidermy

acrylic sculpture Metropol Parasol, Sevilla



Connections

orthogonal cutting
tight connection

simple fabrication ✓
stable structure ✓
flexible design ✗



Connections

orthogonal cuttingangled cutting
tight connectiontight connection

simple fabrication

stable structure

✗ ✓
✓ ✓

flexible design ✓ ✗



Connections

orthogonal cutting orthogonal cuttingangled cutting
tight connection loose connectiontight connection

simple fabrication

stable structure

✗

✗

✓ ✓
✓ ✓

flexible design ✓ ✗ ✓



Connections

orthogonal cutting orthogonal cuttingangled cutting
tight connection loose connectiontight connection

simple fabrication

stable structure

✗

✗

✓ ✓
✓ ✓

flexible design ✓ ✗ ✓
unstablestable



Mathematical Model

planar intersecting piecesconstraint graph



Mathematical Model

• Fabrication 

• Rigidity 

• Assembly

→ constraints on intersection angle

→ constraints on connection pattern

→ constraints on graph cycles



Assembly 
• parallel cuts through all graph cycles

Algorithm

locked =  
impossible to assemble

separable =  
assembly sequence exists

optimization



Design Process



Examples



Examples

angled cutting

tight connection



Examples

top view

side view

constraint  
graph

orthogonal cutting

tight connection



Examples

orthogonal cutting

loose connection

object is fully rigid!



The 7 Piece Puzzle
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Solar Two power plant, USA







Adolf Luther Petursson Finnbogi

Philippe Bompas Joachim Sauter



Flickr: platoisboring

Curves of high intensity

Points of high intensity



Motivation

Photograph of Albert Einstein by Philippe Halsman © Philippe Halsman Archive



Algorithm



Mapping of Rays



Optimal Transport

min

Z

U
kx� ⇡(x)k2dµS(x)

⇡ : U ! U, U ✓ IR22D transport map 

W2(µ, ⌫) :=

✓
inf

�2�(µ,⌫)

Z

M⇥M
d(x, y)2 d�(x, y)

◆1/2

µS(⌦) = µT (⇡(⌦)), ⌦ ✓ U

 

such that



Discrete Optimal Transport



[Aurenhammer et al. 1998, Mérigot EG 2011, de Goes et al. SIG Asia 2012]

Discrete Optimal Transport



Normal Integration

compute target normals optimize 3D position

receiver
mesh

dI

dT

n

ñ ñ

xx

ShapeOp



Algorithm



Olympic Rings

target distribution mesh



Olympic Rings



Olympic Rings



Olympic Rings



Einstein



Einstein



Einstein

Render



Einstein

RenderReal



Einstein

RenderReal



Brain

target distribution

border



Brain

target distribution mesh



Brain

lgg.epfl.ch/caustics
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Collaborators
EPFL 

• Sofien Bouaziz, Bailin Deng, Mario Deuss, Alexandre 
Kaspar, Yuliy Schwartzburg, Andrea Tagliasacchi, 
Romain Testuz 

External 
• Philippe Bompas, Anders Deleuran, Akash Garg, 

Michael Eigensatz, Eitan Grinspun, Thomas Kiser, 
Raimund Krenmueller, Daniel Piker, Florian Rist, 
Andrew Sageman-Furnas, Yonghao Yue, Max 
Wardetzky, Thibaut Weise
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Future

Architectural 
Practice

New 
Materials

Digital 
Fabrication Robotic 

Assembly

Inverse 
Design

Algorithmic 
Design

?

?
? ?

?

?

? ? ??



NCCR - Digital Fabrication 
Innovative Building Processes in Architecture

This new research initiative examines innovative processes of 
design, engineering, manufacturing and construction, with the goal 
to establish digital technology as essential for future building 
processes. 

• Strong collaborative platform for research 
• Ambitious research work at 1:1 scale – to build REAL buildings 
• Multidisciplinary approach  
• Access to cutting-edge technology 
• Strong Industry collaboration platform 
• Fully funded PhD and Postdoc research positions

NCCR Digital Fabrication 
Innovative Building Processes in Architecture 



NCCR - Digital Fabrication 
Innovative Building Processes in Architecture

NCCR Digital Fabrication 
Innovative Building Processes in Architecture 

Philippe Block Jonas Buchli Raffaello D’Andrea Robert Flatt 

Odilo Schoch Roy Smith Yves Weinand Peter Richner 

Sacha Menz Manfred Morari Mark Pauly Fabio Gramazio Guillaume Habert Matthias Kohler 

Architecture

Materials

Robotics

Computer 
Science

Dynamic 
Systems

Design

Sustainability

Structural 
Engineering



NCCR Digital Fabrication 
Innovative Building Processes in Architecture 



NCCR Digital Fabrication 
Innovative Building Processes in Architecture 

We are looking for the best researchers to join us:

- 30+ PhD research projects

- 6-10 Postdoc researchers

- Technicians and support personnel

- 2 new Assistant Professor positions (Architecture + Robotics)

- Visiting academics are welcome for collaborations (unfunded)

!
Additionally – we will be launching a new Masters of Advanced Studies 
program in Digital Fabrication – first class in September 2015. 
!
Positions are open now at the ETH Zurich and the EPFL Lausanne

For more information:    www.dfab.ch 

Opportunities
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